Combating 2019-nCoV: Advanced Nanobiosensing platforms for POC global diagnostics and surveillance

Fact Sheet

Project Information

CoNVat

Grant agreement ID: 101003544

Funded under
H2020-EU.3.1.3.

Start date
10 March 2020

End date
9 March 2022

Overall budget
€ 2 547 152,48

EU contribution
€ 2 547 152,48

Coordinated by
FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA
Spain

Project description

A disruptive point-of-care tool for coronavirus detection

The current COVID-19 pandemic has highlighted the unpreparedness of governments, public organisations and communities to face and manage such a health crisis. For many infectious diseases, prompt pathogen detection is central for taking the appropriate containment measures to halt their spread. The scope of the EU-funded CoNVat project is to develop a point-of-care biosensor approach for the direct, fast and specific identification of the new coronavirus, directly in the patient’s sample. The generated technology will be able to differentiate between the various
viral strains and can be implemented in decentralised settings to improve the early diagnosis, surveillance and clinical management of patients.

Objective

The recent outbreak in China caused by the emerging nCoV virus is challenging the level of global readiness from governments, public organizations and community to face and manage both its social and health consequences. Once the emergence is recognized and identified, it is crucial to initiate the necessary measures to prevent the spread. This involves therapeutics, vaccines, and devising efficient, fast, readily accessible diagnostics methods that specifically confirm the presence of the virus. Early detection can allow the rapid implementation of containment measures, which are the key to reduce the risk of amplification. The aim of CoNVat is to implement a Point-of-care label free biosensor for the direct, fast and specific identification of nCoV in decentralized settings to improve its early diagnosis and the clinical management of patients. The approach employs an already developed technology based on nanophotonic bimodal waveguide (BiMW) interferometers capable of providing real time, highly sensitive detections assays in short sample turnaround times. We propose two different strategies: (i) the development of a fast antigen-based diagnostic test for the specific detection of the intact virus in patient’s samples such as respiratory specimens and non-respiratory fluids (serum, urine...) to be deployed to clinical settings for initial screening and (ii) development of a multiplexed molecular test, PCR-free, for the reliable identification of nCoV, being possible to differentiate the type and strain of coronavirus form other related or more common respiratory viruses. This latter strategy will provide a disruptive diagnostic tool not only from a clinical perspective to improve patient’s outcome but also for surveillance, to study and understand possible transmission routes of this virus by analysing samples from animal reservoirs. Final prototype validation will demonstrate the potential of this approach for the management of future infectious outbreaks.

Fields of science

> > > >

Programme(s)

Topic(s)

Call for proposal
Funding Scheme

RIA - Research and Innovation action

Coordinator

FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA

Address
Campus De La Uab Edifici Q Icn2
08193 Bellaterra (Barcelona)
Spain

Activity type: Research Organisations
EU contribution: € 840 843,73

Website
Contact the organisation

Participants (3)

UNIVERSITAT DE BARCELONA

Spain

EU contribution: € 400 152,50

Address
Gran Via De Les Corts Catalanes 585
08007 Barcelona

Activity type: Higher or Secondary Education Establishments

Website
Contact the organisation

UNIVERSITE D'AIX MARSEILLE

France

EU contribution: € 692 406,25

Address
Boulevard Charles Livon 58
13284 Marseille

Activity type: Higher or Secondary Education Establishments

Contact the organisation

ISTITUTO NAZIONALE PER LE MALATTIE INFETTIVE LAZZARO